Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The SCEC CyberShake platform implements a repeatable scientific workflow to perform 3D physics-based probabilistic seismic hazard analysis (PSHA). Earlier this year we calculated CyberShake Study 24.8 for the San Francisco Bay Area. Study 24.8 includes both low-frequency and broadband PSHA models, calculated at 315 sites. This study required building a regional velocity model from existing 3D models, with a near-surface low-velocity taper and a minimum Vs of 400 m/s. Pegasus-WMS managed the execution of Study 24.8 for 45 days on the OLCF Frontier and TACC Frontera systems. 127 million seismograms and 34 billion intensity measures were produced and automatically transferred to SCEC storage. Study 24.8 used a HIP language implementation of the AWP-ODC wave propagation code on AMD-GPU Frontier nodes to produce strain Green tensors, which were convolved with event realizations to synthesize seismograms. Seismograms were processed to derive data products such as intensity measures, site-specific hazard curves and regional hazard maps. CyberShake combines 3D low-frequency deterministic (≤1 Hz) simulations with high-frequency calculations using stochastic modules from the Broadband Platform to produce results up to 25 Hz, with validation performed using historical events. New CyberShake data products from this study include vertical seismograms, vertical response spectra, and period-dependent significant durations. The presented results include comparisons of hazard estimates between Study 24.8, the previous CyberShake study for this region (18.8), and the NGA-West2 ground motion models (GMMs). We find that Study 24.8 shows overall lower hazard than 18.8, likely due to changes in rupture coherency, with the exception of a few regions: 24.8 shows higher hazard than both the GMMs and 18.8 at long periods in the Livermore area, due to deepening of the Livermore basin in the velocity model, as well as higher hazard east of San Pablo Bay and south of San Jose. At high frequencies, Study 24.8 hazard is lower than that of the GMMs, reflecting reduced variability in the stochastic components. We are also using CyberShake ground motion data to investigate the effects of preferred rupture directions on site-specific hazard. By default, PSHA hazard products assume all events on a given fault and magnitude are equally likely, but by varying these probabilities we can examine the effects of preferred rupture directions on given faults on CyberShake hazard estimates.more » « lessFree, publicly-accessible full text available September 10, 2026
-
Sodic volcano-plutonic terranes in the Archean can be well preserved, but why oxidized S-rich sodic magmas and porphyry-type Cu-Au deposits are so rare remains poorly understood. Here we addressed this issue by measuring the S concentration and S6+/ΣS ratio of primary apatite grains in >2.7 Ga felsic volcanic rocks from the well-characterized Neoarchean Abitibi Greenstone Belt of the Superior Province, Canada. Whereas apatite grains in most samples contain low-S concentrations (<0.01 wt%, n = 24), a few apatite samples are S-rich (0.14 ± 0.03 wt%, 1σ) and have low-S6+/ΣS ratios (0.56 ± 0.17; 1σ, n = 4). Samples with S-poor apatite have variable whole-rock La/Yb ratios (generally <30) and zircon 10 000*(Eu/Eu*)/Yb ratios of 11 ± 8 (1σ), which may be products of plume-driven or over-thickened crustal melting. In contrast, the samples with S-rich apatite have elevated La/Yb ratios of 49 ± 15 (1σ), zircon 10 000*(Eu/EuN*)/Yb ratios of 26 ± 7 (1σ), and zircon δ18O values of 5.8 ± 0.1 ‰ (1σ), consistent with a deep, hydrous and homogeneous mantle-like source for the melts dominated by amphibole ± garnet fractionation that is reminiscent of subduction-like process. These are the first reported results documenting the predominant accommodation of relatively reduced S in S-rich apatite grains crystallized from terrestrial silicate melts, possibly reflecting slight oxidation associated with the hydration of Neoarchean mantle and crystal fractionation over the magma evolution. The more common S-poor apatite data suggest that suppressed oxidation of the parental sodic magmas led to weak S emission from Earth’s interior to its evolving surface, explaining the rarity of porphyry-type Cu deposits in >2.7 Ga Archean sodic volcano-plutonic terranes.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract Precipitation of relativistic electrons into the Earth's atmosphere regulates the outer radiation belt fluxes and contributes to magnetosphere‐atmosphere coupling. One of the main drivers of such precipitation is electron scattering by whistler‐mode waves. Such waves typically originate at the equator, where they can resonate with and scatter sub‐relativistic (tens to a few hundred keV) electrons. However, they can occasionally propagate far away from the equator along field lines, reaching middle latitudes, where they can resonate with and scatter relativistic (>500 keV) electrons. Such a propagation is typical for the dayside, but statistically has not been found on the nightside where the waves are quickly damped along their propagation due to Landau damping. Here we explore two events of relativistic electron precipitation from low‐altitude observations on the nightside. Combining measurements of whistler‐mode waves from ground observatories, relativistic electron precipitation from low‐altitude satellites, total electron content maps from GPS receivers, and magnetic field and electron flux from equatorial satellites, we show wave ducting by plasma density gradients is the possible channel that allows the waves to reach middle latitudes and scatter relativistic electrons. We suggest that both whistler‐mode wave generation and ducting can be driven by equatorial mesoscale (with spatial scales of about one Earth radius) transient structures during nightside injections. We also compare these nightside events with observations of ducted waves and relativistic electron precipitation at the dayside, where wave generation and ducting are driven by ultra‐low‐frequency waves. This study demonstrates the potential importance of mesoscale transients in relativistic electron precipitation, but does not however unequivocally establish that ducted whistler‐mode waves are the primary cause of the observed electron precipitation.more » « less
-
null (Ed.)Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalitemagnetite- quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.more » « less
An official website of the United States government

Full Text Available